Mitotic disassembly of the Golgi apparatus in vivo.

نویسندگان

  • T Misteli
  • G Warren
چکیده

Populations enriched in prophase cells were obtained either by using a cell line with a temperature-sensitive mutation in the mitotic kinase, p34cdc2, or by treating cells with olomoucine, an inhibitor of this kinase. Both methods resulted in efficient and reversible block of the cells at the G2/M boundary. After cells were released from the cell cycle block, the morphological changes to the Golgi apparatus were characterised using both quantitative conventional electron microscopy and immuno-gold microscopy. The early mitotic phases were divided into six stages (G2 to pro-metaphase) based on the morphology of the nucleus. During prophase the cross-sectional length of Golgi stacks decreased prior to unstacking. At the same time, small vesicular profiles, typically 50-70 nm in diameter, accumulated in the vicinity of the stacks. The disappearance of Golgi stacks was accompanied by the transient appearance of tubular networks. By the time cells entered prometaphase, the stacks had completely disassembled and only clusters consisting of Golgi vesicles and short tubular elements were left. When cells were released from the G2/M boundary and pulsed briefly with [AlF4]- to prevent uncoating of transport vesicles, vesicular profiles with a morphology reminiscent of COP-coated vesicles appeared. These vesicular profiles were either associated with Golgi stacks or, at later stages, with clusters, but were formed at all stages of disassembly. Together these results provide further support for our model that continued budding of vesicles from the rims of Golgi cisternae is at least partly responsible for the disassembly of the Golgi apparatus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ordered Inheritance Strategy for the Golgi Apparatus: Visualization of Mitotic Disassembly Reveals a Role for the Mitotic Spindle

During mitosis, the ribbon of the Golgi apparatus is transformed into dispersed tubulo-vesicular membranes, proposed to facilitate stochastic inheritance of this low copy number organelle at cytokinesis. Here, we have analyzed the mitotic disassembly of the Golgi apparatus in living cells and provide evidence that inheritance is accomplished through an ordered partitioning mechanism. Using a Sa...

متن کامل

The Localization of Human Cyclins B1 and B2 Determines Cdk1 Substrate Specificity and Neither Enzyme Requires Mek to Disassemble the Golgi Apparatus

In this paper, we show that substrate specificity is primarily conferred on human mitotic cyclin-dependent kinases (CDKs) by their subcellular localization. The difference in localization of the B-type cyclin-CDKs underlies the ability of cyclin B1-CDK1 to cause chromosome condensation, reorganization of the microtubules, and disassembly of the nuclear lamina and of the Golgi apparatus, while i...

متن کامل

A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis.

In mitosis, chromosome, cytoskeleton, and organelle dynamics must be coordinated for successful cell division. Here, we present evidence for a role for Arf1, a small GTPase associated with the Golgi apparatus, in the orchestration of mitotic Golgi breakdown, chromosome segregation, and cytokinesis. We show that early in mitosis Arf1 becomes inactive and dissociates from Golgi membranes. This is...

متن کامل

Mechanisms and Regulation of the Mitotic Inheritance of the Golgi Complex

In mammalian cells, the Golgi complex is structured in the form of a continuous membranous system composed of stacks connected by tubular bridges: the "Golgi ribbon." At the onset of mitosis, the Golgi complex undergoes a multi-step fragmentation process that is required for its correct partition into the dividing cells. Importantly, inhibition of Golgi disassembly results in cell-cycle arrest ...

متن کامل

Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition.

Two controversies have emerged regarding the signaling pathways that regulate Golgi disassembly at the G(2)/M cell cycle transition. The first controversy concerns the role of mitogen-activated protein kinase activator mitogen-activated protein kinase kinase (MEK)1, and the second controversy concerns the participation of Golgi structure in a novel cell cycle "checkpoint." A potential simultane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 108 ( Pt 7)  شماره 

صفحات  -

تاریخ انتشار 1995